
The GPE graphical programming environment

Peter Ward and Colin Parrott,

The IMP Group

University of Leeds Department of Anatomy, School of Medicine

'TOOLS 91' Technology of Object-Oriented Systems

Abstract

This paper describes the Graphical Programming Environment (GPE), a

system that enables users to manipulate and program the behaviour of

graphical objects via a tool-based interface and an Object-Oriented

Programming Language (OOPL). The GPE was conceived and

developed in a year with the aim of delivering a working program that

employed an object-oriented paradigm to provide target users (authors of

hypermedia applications) with tools that are genuinely easy to use and

which enable the construction of machine-independent applications.

Employing C++, X11 windows and with a principal aim of portability,

the system was restricted to handling text and graphics. As well as

simplicity of use, high quality in the presentation of the interface and

application objects was a principal aim. We believe that it is through a

process of evaluation of a small, but powerful tools by target users in the

construction of a variety of hypermedia applications that the further

evolution of user-oriented information modelling environments can be

informed. Also discussed is subsequent work building on the lessons

learnt with the GPE, including the rejection of C++ in favour of Eiffel

for future work in this area.

Introduction

The Graphical Programming Environment (GPE) is an experimental

Hypermedia authoring system. Hypermedia may be defined as the

dynamic linking and presentation of multimedia information (Meyrowitz

86; Ward 90). The GPE enables Hypermedia applications to be

interactively constructed from text and imported graphics. The GPE

treats text and graphics as interactive, persistent objects that belong to a

class hierarchy, respond to messages and have spatial and semantic

relationships with an another. The user can program these objects to

respond to selection with a pointing device such as a mouse.

The GPE was developed over twelve months in 1989/90 by the IMP

group at the University of Leeds with funding from the Systems

Technology Group, IBM UK Ltd.

Design Criteria

1. To design a user interface that was genuinely easy to operate. A

fundamental belief of the IMP group is that providers of

technology and the developers of applications need to work

towards more “User-Oriented” systems.

2. To support a range of graphical object types. The system had to be

able to deal with near-photographic quality colour images and

limited animation as well as simple graphics and text.

3. To produce hypermedia applications that were highly portable.

The applications constructed with the GPE needed to run on a

range of machines, preferably without having to be mangled by

translation software. This required a machine independent storage

scheme.

4. To investigate a number of technical issues. We were very

interested in the whole relevance of Object-Orientated design and

programming to the specific problems of Hypermedia and to the

problems of software engineering in general.

The Implementation

In the interests of portability we chose UNIX and its variants and the

X11 windowing system (Nye 89) as the core implementation

dependants. The GPE uses only low-level Xlib part of X11, this was

thought sensible, at the time, due to the relative “bugginess” of higher-

level toolkits and their lack of standardisation. However, we believe that

the system could be re-engineered to use higher level X widgets. The

C++ language (Stroustrup 86) seemed like a natural choice considering

our existing experience and the fact the UNIX and X11 both have C

interfaces. Smalltalk (Goldberg and Robson 86) was considered and

rejected for reasons concerning portability, colour support and scale, but

had an influence on much of the design. The GPE was initially

implemented using X11R3 and the Glockenspiel V1.2D C++ compiler

on the Sun 4/260 under SunOS 4.0 and on the IBM PC-RT under AIX.

The GPE has also been ported to X11R4, version 2 of C++, SunOS 4.1

and the IBM RS-6000.

The User Interface

The GPE uses the concept of the pointer being a tool that manipulates

objects beneath it on the screen. The benefits of using the tool metaphor

in interface design are:

1. It provides users with a model that relates well to their experience

of the real world.

2. It provides a framework of possibilities for users to explore.

3. It can be elegantly modelled using the object-oriented paradigm.

Actions by the user result in event messages being sent to the current

tool, the tool can then send further messages to the object it is being

applied to.

The GPE tools were specified using the following criteria:

1. Was the tool essential.

2. Was it easy to use.

3. Was its function understandable.

4. Was it useable in many different situations.

5. Was it compatible with other tools.

6. Was it unique, or could it be combined with another tool.

The objects that tools manipulate have the following features:

1. A rectangular background of solid single colour or 8bit (256)

colour image.

2. Optional border of solid colour.

3. Optional overlaid text.

4. A set of intrinsic messages that they respond to.

5. Three user-programmable method scripts.

The system treats everything including the menus, tools and graphical

objects in a uniform manner. All these things are “objects”. Access to

the object world is provided via an Object-Oriented Programming

Language, in which method scripts are written. Below is a brief

description of each tool: (see Fig 1).

The Rectangle tool creates coloured rectangles with borders. A left

button drag defines two opposite corners of the rectangle. If a rectangle

is created within another rectangle or image it will become “adopted” by

it. An object that is adopted is called a child of the parent object and a

sibling of any other objects sharing the same parent. A tree of spatial

relationships is thus created.

The Image tool creates rectangular colour images from external 24 bit

TIFF files (Aldus 90). A left button click on the desired centre position

of the image produces a list of currently available image filenames. A

left click on one of these filenames will load that file at the indicated

position. If an image is created within another rectangle or image it will

become adopted by it.

The text tool adds text editing facilities to a rectangle or image. A left

button click on a rectangle or image with no text will add some initial

text and put the object in editing mode, if the object already has some

text then it will go straight into editing mode. Note: Text wraps

automatically and will be automatically reformatted if the object is

resized.

The Resize tool changes the geometry of a rectangle or image. A left

button drag inside of any corner or edge of a rectangle or image will

enable the user to change it’s size and shape. The pointer changes to

indicate which corner or edge is being resized. An image will be clipped

if resized smaller and replicated if resized larger.

The Move tool changes the position of an object. A left button drag

moves an object and a new descendant to a new position.

The Copy tool enables objects to be copied. A left button drag makes

one or more copies of an object and it’s descendants in a new position.

When an object is copied all it’s parameters including any programmed

behaviour are also copied.

The Select tool sends !select messages to rectangles or images. A left

button click sends the object beneath the pointer a !select message.

Rectangles and images can be programmed to respond to these

messages. The select tool is the intended “end-use” tool - used to

control a finished application.

The Query tool displays an editable description of a rectangle or image.

A left button click on an object pops up a large rectangle with the

following controls:-

Description Function on left button click

name enter name of object class

x enter x offset

y enter y offset

width enter width

height enter height

border width enter border width

font enter font number

background colour produces palette

border colour produces palette

text colour produces palette

!select method enter/edit script

!deselect method enter/edit script

!appear method enter/edit script

The Colour tool changes the background, border or text colour of a

rectangle or image. The current colour is selected by a left button click

on the palette. A left button click on an object sets the colour of one of

it’s component to the current colour.

The Protection tool stops accidental changes being made to an object by

automatically translating all tool messages (except those from the

protection tool) into !select messages. Objects that are “finished” should

be protected. Note: Protection is inherited by all descendants of a

protected object.

The Destroy tool removes an object completely from the system. A left

button click will pop up a menu offering to destroy the object.

The Exit tool simply lets the user exit the GPE program. If “save

changes and exit” is clicked any changes will be saved - the user will

find everything persists between this and the next session.

The Language

The GPE has a built in OOPL. The language works by modelling

objects that send “messages” to each other. When an object receives a

message, it tries to interpret that message according to an internal

“method”. A method is a script that contains statements from the

language. Underlying the system is a class hierarchy that all objects

belong to. Classes are provided for objects such as numbers, strings and

lists to support basic programming tasks.

A class has the following components:

 Name

 Super Class

 Instance Part Name List

 Instance Method Dictionary

 Class Part Name List

 Class Part List

 Class Method Dictionary

Instance parts exist for each object belonging to the class. Class parts

are shared by all objects belonging to the class. Instance methods are

executed when an instance of a class receives a message. Class methods

are executed when a class receives a message.

Classes are organised into the following hierarchy with the Object class

at the root.

 Object

 Tool

 Number

 String

 List

 Location

 Geometry

 Rectangle

 Image

 Palette

 Tool

 RectangleTool

 ImageTool

 TextTool

 ResizeTool

 MoveTool

 CopyTool

 SelectTool

 QueryTool

 ColourTool

 ProtectionTool

 DestroyTool

 ExitTool

Although many object-oriented systems present users with large number

of classes, the GPE contains an absolute minimum. The temptation to

create many specialised classes was resisted in order to keep the system

small, understandable and flexible.

The Language syntax was designed using the following criteria:

1. Simple to understand

2. Minimum number of reserved words.

3. Infix notation and normal precedence for maths operations.

4. Contextual separation of assignment and equality test.

5. Contextual separation of reference and identity test.

6. No need for statement terminator.

7. Procedural style parameter passing.

8. Mappable to object-oriented semantics.

9. Parsable by recursive descent.

In many situations a method needs to send messages to the receiver of

the message - this is accomplished by using the special object name self.

To teach a rectangle to turn red when selected would require

programming it’s !select method as follows:-

 Self!colour (red)

This statement sends the message !colour(red) to the rectangle. To find

he present colour of the rectangle we would use the following

expression:-

 Self?colour

This expression yields an object that is the colour of the rectangle.

The Architecture

The GPE is constructed as a virtual machine that executes high-level

object-oriented code on an interpreter. This enables much of the system

to be written in the internal language rather than C++. In fact, the

majority of the intrinsic methods are written using the internal OOPL.

The virtual machine is divided into 3 major units:

A Persistent Storage Manager (PSM) looks after all memory and file

management tasks for GPE objects. This enables all objects to be

referred to in C++ via 32 bit handles called IDs. Unlike machine

addresses these are portable, persistent and can address a larger space

than the machine memory, without the use of virtual memory.

The X11 Interfaces translates incoming X events into messages to the

current tool and implements graphical output primitives.

The Kernel sits between the PSM and the X11 Interface and consists of

the following sub-systems:

A Script Compiler uses a recursive descent algorithm to parse script text

strings into an internal (more efficient) form. The compiler has access to

internal dictionaries and the call hierarchy. The compiler consists of

three conceptional sections - a lexical analyser, a syntax parser and a

code generator. The latter outputs a 32 bit stream of code that is

executable by the interpreter.

An Interpreter implements the sending of messages by executing

compiled code and by call primitive C++ functions. It performs method

dictionary lookups and superclass chaining to find methods that match

receive messages. The compiled code is executed using a reverse polish

scheme, a stack and a small set of primitive opcodes. The stack is

employed to store temporary variables, parameters and housekeeping

information.

A Global Dictionary contains string-ID associations. It is used to store

the IDs of classes and global instances.

A Selector Dictionary contains string-selector associations. It is used by

the compiler to convert strings representing method selectors into a

compact tokenised form. The interpreter can deal with these tokens

much more effectively than with text.

A set of idealised C++ objects called “things” map high-level objects

onto the machine architecture. These objects represent the basic entities

used by the virtual machine such as integers and arrays. These C++

objects are idealised in the sense that they are completely opaque and

have sophisticated capabilities like persistence.

Conclusions

The GPE demonstrates the feasibility of using an object-oriented tool

metaphor for hypermedia and prototyping applications. It provides a

framework for serious evaluation and development and is a useful

prototyping tool in its own right. The implementation uses a variety of

novel techniques that could be transplanted into other applications.

The GPE has been used to construct several small applications. These

include a realistic looking panel with push buttons, toggle switches and

sliders that animate when selected (see Fig 2). The settings of these

simulated controls effect other features like the colour of a “LED” or the

position of a photo in a frame. Another application displays a

diagrammatic representation of a sensorimotor reflex “circuit” in the

Human Nervous System. This diagram can be interrogated for

information on its components and can be “Stimulated” to produce an

animated simulation of the neurons firing etc. Other applications

include an interactive demonstration of Human Vision in which the

various components of the eye are interrogatable and responses to light

and objects moving in the distance are revealed by direct manipulation.

This practical experience has confirmed the usefulness of the language

and the majority of the tools. The protect tool was however not a success

- an undo facility and an automatic save mechanism would have been

much better. The system also needs the addition of two new tools. One

for controlling reparenting operations and another for segmenting

images into non-rectangular components. The technicalities behind such

features are something we would like to address in future work.

We are conducting experimental evaluation exercises with various types

of user (including designers of an object-oriented interface building

environment employing an event handling approach in contrast to our

script approach to user object programming) in order to better

understand the effectiveness of various end user interface dialogue

strategies. We believe that such an approach to evaluation by designers

of tools intended to be used by real users in the construction of

applications is very important.

We encountered several problems with C++. Many, such as lack of

multiple inheritance and poor stream support have been fixed in version

2 of C++ but we still have an uncomfortable feeling about the language.

In being so close to C it shares all of its problems and adds a few new

ones. Basic types not being objects, lack of support for persistence, no

automatic garbage collection and lack of any decent class libraries are all

things that put us off using C++ for future work.

Since starting the project, the Eiffel language and environment (Meyer

88, 90) have come to our attention. The language offers advanced

features like assertions, exceptions, generic classes, controllable multiple

inheritance and the avoidance of pointers and global variables. The

implementation offers automatic garbage collection, constant time

features access (message sending) and persistence. The environment

includes an extensive class library, and tools for managing compilation,

browsing classes, debugging programs and generating documentation

automatically.

Using Eiffel instead of C++ for the GPE could have had following

results:

The program would have been far more robust due to the use of

assertions and the avoidance of pointers. The PSM would have been

much simpler if based on Eiffels built-in persistence mechanisms. The

“Things” C++ objects would not have been needed as Eiffel has classes

with similar capabilities in its library. Automatic compilation

management would have meant no time wasted editing make files.

Automatic documentation would mean that we had up-to-date

documentation to refer to while writing this paper!

Exposure to the Eiffel language and environment have convinced us that

a “fresh start” is better than a “bolt-on” approach for delivering a

coherent and powerful OOPL. C++, which being a great step forward

for C programming, does not offer the same potential as Eiffel.

The authors are delighted to acknowledge the support of IBM UK

Hursley Park New Technologies Group.

END

